Cloning of a novel RNA binding polypeptide (RA301) induced by hypoxia/reoxygenation
- PMID: 7499316
- DOI: 10.1074/jbc.270.47.28216
Cloning of a novel RNA binding polypeptide (RA301) induced by hypoxia/reoxygenation
Abstract
Astrocytes have a critical role in the neuronal response to ischemia, as their production of neurotrophic mediators can favorably impact on the extreme sensitivity of nervous tissue to oxygen deprivation. Using a differential display method, a novel putative RNA binding protein, RA301, was cloned from reoxygenated astrocytes. Analysis of the deduced amino acid sequence showed two ribonucleoprotein domains and serine/arginine-rich domains, suggestive of their function as RNA splicing factor. Northern analysis displayed striking induction only in cultured astrocytes within 15 min of reoxygenation and reached a maximum by 60 min after hypoxia/reoxygenation. Immunoblotting demonstrated expression of an immunoreactive polypeptide of the expected molecular mass, 36 kDa, in lysates of hypoxia/reoxygenated astrocytes. Induction of RA301 mRNA was mediated, in large part, by endogenously generated reactive oxygen species, as shown by diphenyl iodonium, an inhibitor of neutrophil-type nicotinamide adenine dinucleotide phosphate oxidase which blocks oxygen-free radical formation by astrocytes. Similarly, increased expression of RA301 in supporting a neurotrophic function of astrocytes was suggested by inhibition of interleukin-6 elaboration, a neuroprotective cytokine, in the presence of antisense oligonucleotide for RA301. These studies provide a first step in characterizing a novel putative RNA binding protein, whose expression is induced by oxygen-free radicals generated during hypoxia/reoxygenation, and which may have an important role in redirection of biosynthetic events observed in the ischemic tissues.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases