Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;10(9):1417-27.
doi: 10.1002/jbmr.5650100920.

The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles

Affiliations

The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles

J Yao et al. J Bone Miner Res. 1995 Sep.

Abstract

Periprosthetic osteolysis with or without aseptic loosening is a major clinical problem in total hip arthroplasty. While the macrophage response to prosthetic wear debris and its role in periprosthetic osteolysis has been extensively studied, information regarding other cell types (fibroblasts, osteoblasts) is limited. This study explored the response of fibroblasts to particulate wear debris. Fibroblasts isolated from interfacial membranes of patients with failed total hip replacements and normal synovial tissue, when challenged with small-sized ( < 3 microns) titanium (Ti) particles, responded with significantly enhanced expressions of collagenase, stromelysin and, to a much lesser extent, their tissue inhibitor of metalloproteinases (TIMP). These "regulated" expressions at both mRNA and protein levels were correlated with the size and composition of particles. De novo protein synthesis was required for the regulation of these mRNAs. A similar effect could be induced by the treatment of the cells with particle-free conditioned medium from Ti particle-stimulated fibroblasts. Furthermore, this conditioned medium significantly suppressed the mRNA levels of procollagen alpha 1 (I) and alpha 1 (III) in osteoblast-like MG-63 cells. It is concluded that fibroblasts stimulated with certain particle debris may play an important role in periprosthetic osteolysis by releasing bone-resorbing metalloproteinases and mediator(s) which resulted in suppressed collagen synthesis in osteoblasts.

PubMed Disclaimer

Similar articles

Cited by

Publication types