Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec 1;151(11):6410-7.

Protective effects of selectin chimeras in neutrophil-mediated lung injury

Affiliations
  • PMID: 7504020

Protective effects of selectin chimeras in neutrophil-mediated lung injury

M S Mulligan et al. J Immunol. .

Abstract

Recombinant selectin chimeric molecules featuring the joining of the extracellular domains of L-, P-, and E-selectin to the CH2 and CH3 domains of human IgG1 have been evaluated for their ability to protect against neutrophil-dependent lung injury in rats after systemic activation of C caused by vascular infusion of cobra venom factor (CVF) or lung injury that follows intrapulmonary deposition of IgG immune complexes. Previous studies using anti-selectin antibodies have suggested that the former model is P-selectin dependent, whereas the latter is E-selectin dependent. Requirements for L-selectin have not been identified because of lack of reagents. For the current studies employing the CVF model of lung injury, infusion of P-selectin-Ig chimera reduced injury (as assessed by changes in permeability and hemorrhage) in a dose-dependent manner, with parallel reductions in lung myeloperoxidase (MPO) content. Similar results were obtained with the L-selectin-Ig chimera, whereas the E-selectin-Ig chimera was not protective and failed to alter MPO content. In contrast, in the IgG immune complex model of lung injury, the L- and E-selectin-Ig chimeras both showed dose-related protective effects and reductions in MPO content, whereas the P-selectin-Ig chimera failed to protect against injury and did not alter MPO content in this model of lung injury. In all cases of blocking of injury, this was incomplete, suggesting multi-selectin engagement or inadequate amounts of selectin-Ig chimeras employed. These data indicate that neutrophil recruitment and attendant lung injury in the CVF model are L- and P-selectin dependent and E-selectin-independent, whereas in the IgG immune complex model, neutrophil recruitment and lung injury are L- and E-selectin-dependent but independent of P-selectin. Thus, differing selectin requirements for acute inflammatory lung injury have been identified.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources