Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Dec 1;296 ( Pt 2)(Pt 2):313-9.
doi: 10.1042/bj2960313.

Rat cortical synaptosomes have more than one mechanism for Ca2+ entry linked to rapid glutamate release: studies using the Phoneutria nigriventer toxin PhTX2 and potassium depolarization

Affiliations
Comparative Study

Rat cortical synaptosomes have more than one mechanism for Ca2+ entry linked to rapid glutamate release: studies using the Phoneutria nigriventer toxin PhTX2 and potassium depolarization

M A Romano-Silva et al. Biochem J. .

Abstract

PhTX2, one of the components of the venom of the South American spider Phoneutria nigriventer, inhibits the closure of voltage-sensitive Na+ channels. Incubation of cerebral-cortical synaptosomes with PhTX2 causes a rapid increase in the intrasynaptosomal free Ca2+ concentration and a dose-dependent release of glutamate. This release is made up of a slow component, which appears to be due to reversal of Na(+)-dependent glutamate uptake, and more rapid component that is dependent on the entry of extrasynaptosomal Ca2+. It has previously been shown that membrane depolarization using KCl can cause rapid Ca(2+)-dependent release of glutamate from synaptosomes. This requires Ca2+ entry through a specific type of Ca2+ channel that is sensitive to Aga-GI, a toxic component of the venom of the spider Agelenopsis aperta. We have compared the effects of PhTX2 and KCl on elevation of intrasynaptosomal free Ca2+ and glutamate release, and a number of differences have emerged. Firstly, PhTX2-mediated Ca2+ influx and glutamate release, but not those caused by KCl, are inhibited by tetrodotoxin. Secondly, KCl produces a clear additional increase in Ca2+ and glutamate release following those elicited by PhTX2. Finally, 500 microM MnCl2 abolishes PhTX2-mediated, but not KCl-mediated, glutamate release. These findings suggest that more than one mechanism of Ca2+ entry may be coupled to glutamate release from nerve endings.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1989 Nov 15;264(32):19449-57 - PubMed
    1. Naunyn Schmiedebergs Arch Pharmacol. 1993 Feb;347(2):205-8 - PubMed
    1. Mol Pharmacol. 1990 Sep;38(3):393-400 - PubMed
    1. Exp Physiol. 1990 Jul;75(4):573-86 - PubMed
    1. J Neurochem. 1991 Jan;56(1):86-94 - PubMed

Publication types

MeSH terms