Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec;265(6 Pt 1):C1597-603.
doi: 10.1152/ajpcell.1993.265.6.C1597.

Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle

Affiliations

Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle

P D Neufer et al. Am J Physiol. 1993 Dec.

Abstract

Endurance exercise training elicits an increase in mitochondrial density as well as GLUT-4 glucose transporter protein content in skeletal muscle. Corresponding increases in mRNA for respiratory enzymes and GLUT-4 indicate that pretranslational control mechanisms are involved in this adaptive process. To directly test whether transcription of the GLUT-4 gene is activated in response to exercise training, nuclei were isolated from red hindlimb skeletal muscle of rats after 1 wk of exercise training (8% grade, 32 m/min, 40 min, twice/day). Rats were killed either 30 min, 3 h, or 24 h after the last training session. GLUT-4 transcription, determined by nuclear run-on analysis, was unaltered after 30 min, increased by 1.8-fold after 3 h, but was no longer different from controls 24 h after exercise. A similar transient increase in GLUT-4 transcription was evident, but less pronounced (1.4-fold), in untrained rats after a single bout of exercise, suggesting that the postexercise induction in GLUT-4 gene transcription is enhanced by exercise training. GLUT-4 protein content was increased 1.7-fold after 1 wk of training in the absence of any corresponding change in GLUT-4 mRNA, providing evidence that the initial increase in GLUT-4 expression involves translational and/or posttranslational control mechanisms. These findings demonstrate that muscle GLUT-4 expression in response to exercise training is subject to both transcriptional and posttranscriptional regulation. We propose that the increase in GLUT-4 mRNA evident with extended periods of training may result from a shift to pretranslational control and is the cumulative effect of repeated postexercise transient increases in GLUT-4 gene transcription.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources