Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan;102(1):17-23.
doi: 10.1111/1523-1747.ep12371725.

Mutations in the H1 and 1A domains in the keratin 1 gene in epidermolytic hyperkeratosis

Affiliations
Free article

Mutations in the H1 and 1A domains in the keratin 1 gene in epidermolytic hyperkeratosis

J M Yang et al. J Invest Dermatol. 1994 Jan.
Free article

Abstract

In the autosomal dominant disorder epidermolytic hyperkeratosis, the structural integrity of the keratin intermediate filaments is altered in the suprabasal layers of the epidermis. We and others have used genetic linkage studies and mutation analysis to establish that single amino acid substitutions in either the keratin 1 or keratin 10 chains can cause epidermolytic hyperkeratosis. However, a larger database of mutations is required to better understand the relationship between specific mutations in these keratin chains and their effect on keratin filament structure. A larger database will also provide a catalog that may be useful for genetic counseling purposes. In this paper, we report the identification of three new mutations of the keratin 1 chain of epidermolytic hyperkeratosis probands in highly conserved residues in the H1 or beginning of the 1A rod domain segments. These correspond to regions involved in molecular overlaps between neighboring molecules in keratin filaments. Using an in vitro assay, synthetic peptides bearing these substitutions show diminished capacity to disassemble preformed filaments in vitro in comparison to the wild type peptides. Moreover, analyses of all mutations in epidermolytic hyperkeratosis known to date demonstrate remarkable clustering in the molecular overlap region. We conclude that non-conservative substitutions in the overlap region are likely to interfere with normal keratin filament structure and function, leading to pathology.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources