Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice
- PMID: 7507247
- PMCID: PMC42972
- DOI: 10.1073/pnas.91.2.479
Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice
Abstract
Although loss of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- channel function is common to all epithelia in cystic fibrosis (CF) patients, the severity of disease varies in different organs. We hypothesized that differences in disease severity in CF relate to the expression of an "alternative" plasma membrane Cl- conductance. In CF mice [Cftr(-/-); mice homozygous for Ser-489 to Xaa mutation], which do not express cAMP CFTR-mediated Cl- secretion, we surveyed organs that exhibit a range of disease severity for a Ca(2+)-mediated apical membrane epithelial Cl- conductance. This alternative conductance (Cl-a) was detected in epithelia of organs from CF mice that exhibit a mild disease phenotype (airway, pancreas) but not in epithelia with a severe phenotype (small, large intestine). We conclude that (i) there is an intracellular Ca(2+)-regulated Cl- conductance that is molecularly distinct from CFTR; and (ii) the level of expression of this alternative Cl- conductance in the epithelium is an important determinant of the severity of organ-level disease in CF.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
