Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb;55(2):227-33.
doi: 10.1002/jlb.55.2.227.

Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages

Affiliations

Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages

C Bogdan et al. J Leukoc Biol. 1994 Feb.

Abstract

Nitric oxide (NO) contributes to the antitumor, antimicrobial, and immunosuppressive activity of macrophages. An inducible form of NO synthase (iNOS) is responsible for high output generation of nitric oxide by macrophages after stimulation with cytokines and/or lipopolysaccharide (LPS). In the present study, we demonstrate that interleukin 4 (IL-4) suppressed production of NO by primary mouse peritoneal macrophages exposed to IFN-gamma with or without LPS, even while synergizing with IFN-gamma to increase the secretion of TNF-alpha. Suppression of NO production was paralleled by decreases in iNOS enzyme activity and iNOS antigen. IL-4 did not inhibit induction of iNOS mRNA 4-6 h after exposure to IFN-gamma, but strongly reduced iNOS mRNA at later times of stimulation (24-72 h), without increasing its turnover. The conditions for maximal suppression of iNOS expression by IL-4 and the mechanisms of suppression differed from those determined in parallel for transforming growth-factor-beta as described elsewhere. These results illustrate the diversity of phenotypes of macrophages deactivated by different cytokines, and demonstrate that IL-4 has the potential to reduce one component of the anti-tumor, antimicrobial, and immunosuppressive activities of macrophages.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources