Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct:470:501-20.
doi: 10.1113/jphysiol.1993.sp019872.

Mitogenic factors regulate ion channels in Schwann cells cultured from newborn rat sciatic nerve

Affiliations

Mitogenic factors regulate ion channels in Schwann cells cultured from newborn rat sciatic nerve

G F Wilson et al. J Physiol. 1993 Oct.

Abstract

1. Patch clamp studies were carried out in Schwann cells cultured from newborn rat sciatic nerve to determine the effects of mitogens on voltage-gated currents without the confounding influences of axonal contact and myelin present in vivo. The relevance of the various Schwann cell currents to proliferation was assessed using assays of [3H]thymidine incorporation. 2. Treatment of cultured Schwann cells with known mitogens, namely axon fragments (AF), myelin fragments (MF), or glial growth factor in combination with forskolin (GGF+F), increased the magnitudes of delayed rectifying potassium (K+) and sodium (Na+) currents. 3. In both control and mitogen-treated cells, the magnitude of net outward current paralleled clearly the magnitude of the cells' proliferative response. 4. The K+ channel-blocking quaternary ammonium ions, tetrabutylammonium (TBuA), tetrapentylammonium (TPeA) and tetrahexylammonium (THeA), but not the Na+ channel blocker tetrodotoxin (TTX), reduced proliferation in a dose-dependent fashion offering further evidence for a role for K+ channels in Schwann cell proliferation. 5. Voltage-gated chloride (Cl-) currents were observed in both control and mitogen-treated cells. Addition of the Cl- channel blockers, 4-acetamido-4'-isocyanatostilbene-2,2'-disulphonate (SITS) or 4,4'-diisothiocyanatostilbene-2,2'-disulphonate (DIDS), to the culture media enhanced proliferation. 6. The possible intermediary role of the Schwann cell resting potential was explored in ion substitution experiments by increasing the K+ concentration of the media and by adding ouabain. Both manipulations inhibited Schwann cell mitosis. 7. Comparison of the expression of functional ion channels in vitro with that previously described for Schwann cells in vivo suggests a difference in the Schwann cell response to the membrane fragment mitogens and their intact counterparts in regard to the regulation of ion channels. MF up-regulates the number of functional channels, whereas the elaboration of myelin (or a factor related to its presence) in vivo appears to down-regulate channel expression, at the cell soma of myelinating Schwann cells. In addition, axonal contact may be required for normal expression of functional inwardly rectifying K+ channels.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1984 Feb 2-8;307(5950):465-8 - PubMed
    1. Nature. 1982 Jan 7;295(5844):68-71 - PubMed
    1. Proc Natl Acad Sci U S A. 1985 Feb;82(3):948-52 - PubMed
    1. J Neurocytol. 1985 Aug;14(4):619-35 - PubMed
    1. Brain Res. 1986 Jan 1;362(1):23-32 - PubMed

Publication types

MeSH terms

LinkOut - more resources