Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov:471:767-86.
doi: 10.1113/jphysiol.1993.sp019927.

Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery

Affiliations

Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery

C Dart et al. J Physiol. 1993 Nov.

Abstract

1. The perforated patch technique with nystatin or amphotericin was used to record whole cell currents activated by adenosine in smooth muscle cells isolated enzymatically from pig coronary arteries. 2. Adenosine (5-40 microM) activated an outward current at a holding potential of 0 mV in 5 mM [K+]o and an inward current at -60 mV in 143 mM [K+]o. The dependence of the reversal potential for the adenosine-activated current on [K+]o suggests that it flows through K+ channels, while its current-voltage relation is consistent with the channels showing little voltage dependence. 3. The adenosine-activated current was inhibited by the sulphonylurea glibenclamide (5 microM) and by phencyclidine (5 microM). It was unaffected by charybdotoxin (50 nM) or apamin (100 nM), blockers of large and small conductance Ca(2+)-activated K+ channels respectively. 4. At -60 mV in 143 mM K+ solution, openings of single channels passing a current of just over -2 pA could sometimes be detected in the absence of adenosine. Openings became more frequent after the application of adenosine, with several levels then being detected. Openings of channels with a larger conductance were sometimes also seen in the presence of adenosine. Fluctuation analysis gave somewhat lower estimates of unitary current than did direct measurements. 5. The effect of adenosine could be mimicked by the A1 receptor agonist CCPA (2-chloro-N6-cyclopentyladenosine), while the A2 agonist CGS 21680 (2-p-(2-carboxethyl)phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride) was without effect. The response to adenosine was inhibited by the A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine), but was unaffected by the A2 antagonist CGS 15943A (5-amino-9-chloro-2-(2-furanyl)-1,2,4- triazolo[1,5-C]quinazoline monomethanesulphonate). 6. Our results suggest that adenosine acts at an A1 receptor to activate K+ channels. We consider it most likely that these are ATP-dependent K+ channels. We discuss the mechanism by which K+ channel activation may lead to hyperpolarization and so vasorelaxation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1990 Sep 25;265(27):16683-90 - PubMed
    1. J Physiol. 1990 Sep;428:501-16 - PubMed
    1. Circ Res. 1980 Dec;47(6):807-13 - PubMed
    1. J Pharmacol Exp Ther. 1984 Aug;230(2):483-92 - PubMed
    1. J Physiol. 1991 Oct;442:297-319 - PubMed

Publication types

MeSH terms

LinkOut - more resources