Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar 15;83(6):1632-9.

Fc gamma receptor II (CD32) on malignant B cells influences modulation induced by anti-CD19 monoclonal antibody

Affiliations
  • PMID: 7510146
Free article

Fc gamma receptor II (CD32) on malignant B cells influences modulation induced by anti-CD19 monoclonal antibody

S F Vervoordeldonk et al. Blood. .
Free article

Abstract

Antigenic modulation is one of many factors determining the effectiveness of monoclonal antibody (MoAb)-mediated therapy. To select the isotype of a CD19 MoAb most suitable for radioimmunotherapy of patients with B-cell malignancies, we studied the influence of MoAb isotype on modulation, after binding of the MoAb to different cell-line cells. The CD19-IgG1 MoAb was found to induce modulation of CD19 antigens on Daudi cell line cells more rapidly than did its IgG2a switch variant. We provide evidence that this difference in modulation rate is caused by the expression of Fc gamma receptor II (Fc gamma RII) on these cells. Experiments aimed at elucidating the mechanism of Fc gamma RII involvement in modulation induction by CD19-IgG1 showed that Fc gamma RII did not comodulate with CD19 MoAbs. However, cocrosslinking of CD19 and Fc gamma RII with CD19-IgG1 MoAb resulted in enhanced calcium mobilization in Daudi cells. This increased signal induction accompanies the enhanced capping and subsequent modulation of CD19 antigens. Because Fc gamma RII is expressed in varying densities on malignant B cells in all differentiation stages, our results have implications for the MoAb isotype most suitable for use in MoAb-based therapy of patients with B-cell malignancies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources