Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr 28;1185(2):203-12.
doi: 10.1016/0005-2728(94)90211-9.

Characterization and partial purification of the VDAC-channel-modulating protein from calf liver mitochondria

Affiliations

Characterization and partial purification of the VDAC-channel-modulating protein from calf liver mitochondria

M Y Liu et al. Biochim Biophys Acta. .

Abstract

The mitochondrial channel, VDAC, mediates metabolic flux across the mitochondrial outer membrane. When reconstituted into planar phospholipid membranes, VDAC is voltage-dependent, existing in multiple conformational states with different selectivities and permeabilities. At low membrane potentials, these channels are in the open state and are anion-selective. VDAC channels switch to lower-conductive closed states at high membrane potentials. The VDAC modulator, a soluble mitochondrial protein, has been demonstrated to dramatically increase the voltage dependence of VDAC channels and induce the channels to enter closed states even at low membrane potentials. We have isolated and partially purified this modulating protein and the activity is associated with a 54 kDa protein on SDS-PAGE. Under native reduced conditions the activity eluted around 100 kDa from a gel filtration column. As little as 200 ng/ml of the partially purified protein was sufficient to modulate reconstituted VDAC channels. This protein had a pI of 5.1. A second activity with a pI of 4.8 was far more potent, making VDAC-channel-containing membranes virtually non-conductive in some experiments. The effects of both modulator activities could be completely reversed by the addition of pronase. Simple perfusion of the chamber did not reverse the effect of the modulator on VDAC. By controlling the gating of VDAC channels, the VDAC modulator could play an important role in regulating cellular metabolism.

PubMed Disclaimer

Publication types

LinkOut - more resources