Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Apr;266(4 Pt 1):C1061-8.
doi: 10.1152/ajpcell.1994.266.4.C1061.

Mechanism of sodium hyperabsorption in cultured cystic fibrosis nasal epithelium: a patch-clamp study

Affiliations
Comparative Study

Mechanism of sodium hyperabsorption in cultured cystic fibrosis nasal epithelium: a patch-clamp study

T C Chinet et al. Am J Physiol. 1994 Apr.

Abstract

Transepithelial Na+ absorption is increased two to three times in cystic fibrosis (CF) compared with normal (NL) airway epithelia. This increase has been associated with a higher Na+ permeability of the apical membrane of airway epithelial cells. Because Na+ absorption is electrogenic and abolished by amiloride, Na+ channels are thought to dominate the apical membrane Na+ permeability. Three Na+ channel-related mechanisms may explain the increase in apical Na+ permeability in CF cells: increased number of channels, increased single-channel conductance, and increased single-channel open probability. We compared the properties of Na(+)-permeable channels in the apical membrane of confluent preparations of human NL and CF nasal epithelial cells cultured on permeable supports. Na(+)-permeable channels were studied using the patch-clamp technique in the excised inside-out and cell-attached configurations. The same types of Na(+)-permeable channels were recorded in CF and NL cells. In excised patches, nonselective (Na+/K+) cation channels were recorded, and no differences between CF and NL were found in the properties, incidence, single-channel conductance, and single-channel open probability. In cell-attached patches, channels with a higher Na+ vs. K+ selectivity dominated. There was no difference between CF and NL cells in the incidence (18.8 vs. 21.4%, respectively) and conductance (17.2 +/- 2.8 vs. 21.4 +/- 1.5 pS, respectively) of Na(+)-permeable channels. However, the open probability was higher in CF cells compared with NL cells (30.0 +/- 3.4%, n = 6, vs. 15.0 +/- 3.9%, n = 13; P < 0.05). We conclude that, in CF nasal epithelial cells, the increase in Na+ permeability of the apical membrane results from an increase in the open probability of Na(+)-permeable channels in the apical membrane.

PubMed Disclaimer

Publication types

LinkOut - more resources