Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May 19;369(6477):235-9.
doi: 10.1038/369235a0.

Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase

Affiliations

Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase

D N Lieberman et al. Nature. .

Abstract

Protein kinases modulate the activity of several ligand-gated ion channels, including the NMDA (N-methyl-D-aspartate) subtype of glutamate receptor. Although phosphorylation and dephosphorylation of glutamate receptors may participate in several lasting physiological and pathological alterations of neuronal excitability, the physiological control of this cycle for NMDA channels has not yet been established. Using cell-attached recordings in acutely dissociated adult rat dentate gyrus granule cells, we now demonstrate that inhibitors of an endogenous serine/threonine phosphatase prolong the duration of single NMDA channel openings, bursts, clusters and superclusters. Okadaic acid, a non-selective phosphatase inhibitor, prolongs channel openings only at a concentration that inhibits the Ca2+/calmodulin-dependent phosphatase 2B (calcineurin), and is ineffective when Ca2+ entry through NMDA channels is prevented. Furthermore, FK506, an inhibitor of calcineurin, mimics the effects of okadaic acid. Thus in adult neurons, calcineurin, activated by calcium entry through native NMDA channels, shortens the duration of channel openings. Simulated synaptic currents were enhanced after phosphatase inhibition, which is consistent with the importance of phosphorylation of the NMDA-receptor complex in the short- and long-term control of neuronal excitability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources