Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jun;62(6):2404-19.
doi: 10.1046/j.1471-4159.1994.62062404.x.

Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: pharmacokinetic and morphological assessments

Affiliations

Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: pharmacokinetic and morphological assessments

W A Banks et al. J Neurochem. 1994 Jun.

Abstract

Native horseradish peroxidase (HRP) and the lectin wheat germ agglutinin (WGA) conjugated to HRP are protein probes represented in the blood-brain barrier (BBB) literature for elucidating morphological routes of passage between blood and brain. We report the application of established pharmacokinetic methods, e.g., multiple-time regression analysis and capillary depletion technique, to measure and compare bidirectional rates of passage between blood and brain for radioactive iodine-labeled HRP (I-HRP), WGA-HRP (I-WGA-HRP), and the serum protein albumin (I-ALB) following administration of the probes intravenously (i.v.) or by intracerebroventricular (i.c.v.) injection in mice. The pharmacokinetic data are supplemented with light and electron microscopic analyses of HRP and WGA-HRP delivered i.v. or by i.c.v. injection. The rates of bidirectional movement between blood and brain are the same for coinjected I-HRP and I-ALB. Blood-borne HRP, unlike WGA-HRP, has unimpeded access to the CNS extracellularly through sites deficient in a BBB, such as the circumventricular organs and subarachnoid space/pial surface. Nevertheless, blood-borne I-WGA-HRP enters the brain approximately 10 times more rapidly than I-HRP and I-ALB. Separation of blood vessels from the neocortical parenchyma confirms the entry of blood-borne I-WGA-HRP to the brain and sequestration of I-WGA-HRP by cerebral endothelial cells. Nearly half the I-WGA-HRP radioactivity associated with cortical vessels is judged to be subcellular. Light microscopic results suggest the extracellular pathways into the brain available to blood-borne native HRP do not represent predominant routes of entry for blood-borne WGA-HRP. Ultrastructural analysis further suggests WGA-HRP is likely to undergo adsorptive transcytosis through cerebral endothelia from blood to brain via specific subcellular compartments within the endothelium. Entry of blood-borne I-WGA-HRP, but not of I-ALB, is stimulated with coinjected unlabeled WGA-HRP, suggesting the latter may enhance the adsorptive endocytosis of blood-borne I-WGA-HRP. With i.c.v. coinjection of I-WGA-HRP and I-ALB, I-WGA-HRP exists the brain more slowly than I-ALB. The brain to blood passage of I-WGA-HRP is nil with inclusion of unlabeled WGA-HRP, which does not alter the exist of I-ALB. Adsorptive endocytosis of i.c.v. injected WGA-HRP appears restricted largely to cells lining the ventricular cavities, e.g., ependymal and choroid plexus epithelia. In summary, the data suggest that the bidirectional rates of passage between brain and blood for native HRP are comparable to those for albumin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources