Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May 27;269(21):14865-8.

Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator

Affiliations
  • PMID: 7515047
Free article

Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator

M H Akabas et al. J Biol Chem. .
Free article

Abstract

The cystic fibrosis transmembrane conductance regulator forms a chloride channel that is regulated by phosphorylation and intracellular ATP levels. The structure of the channel-forming domains is undetermined. To identify the residues lining this channel we substituted cysteine, one at a time, for 9 consecutive residues (91-99) in the M1 membrane-spanning segment. The cysteine substitution mutants were expressed in Xenopus oocytes. We determined the accessibility of the engineered cysteine to charged, sulfhydryl-specific methanethiosulfonate reagents added extracellularly. We assume that, among residues in membrane-spanning segments, only those lining the channel will be accessible to react with these hydrophilic reagents and that such a reaction would irreversibly alter conduction through the channel. Only the cysteines substituted for Gly-91, Lys-95, and Gln-98 were accessible to the reagents. We conclude that these residues are in the channel lining. The periodicity of these residues is consistent with an alpha-helical secondary structure.

PubMed Disclaimer

Publication types

LinkOut - more resources