Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;266(5 Pt 1):C1478-83.
doi: 10.1152/ajpcell.1994.266.5.C1478.

Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice

Affiliations

Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice

B R Grubb et al. Am J Physiol. 1994 May.

Abstract

We investigated the effect of homozygous genetic disruption of the murine cystic fibrosis transmembrane regulator (CFTR) gene on regulation of the rates of Na+ absorption and Cl- secretion by nasal epithelia in cystic fibrosis (CF) mice. The basal in vivo nasal potential difference (PD; -28.8 +/- 1.8 mV, n = 10) and amiloride-sensitive PD (delta 13.8 +/- 1.0 mV, n = 10) were raised in CF mice compared with controls [-7.8 +/- 0.8 mV, n = 14 (basal); delta 4.5 +/- 0.7 mV, n = 14 (amiloride)], consistent with raised Na+ transport. In vitro studies of freshly excised nasal epithelia confirmed that CF epithelia exhibited a greater basal equivalent short-circuit current (Ieq; 63.5 +/- 12 microA/cm2, n = 15) vs. control (30.2 +/- 7.2 microA/cm2, n = 16) and amiloride-sensitive Ieq (delta 46.2 +/- 12.5 microA/cm2) vs. control (delta 11.3 +/- 4.5 microA/cm2). Tissue from normal mice failed to secrete Cl- in response to ionomycin (delta Ieq: -1.2 +/- 1.9 microA/cm2, n = 18), whereas CF murine tissue responded with a large rise in Ieq (delta 55.1 +/- 19.1 microA/cm2, n = 13). We conclude that CF murine nasal epithelia exhibit Na+ hyperabsorption, providing strong evidence for a regulatory link between CFTR and Na+ channel activity in airway epithelia. We speculate that upregulation of the Ca(2+)-mediated Cl- secretory pathway buffers the severity of airway disease in the CF mouse.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources