Molecular context of a viral T cell determinant within a chimeric bacterial protein alters the diversity of its T cell recognition
- PMID: 7515911
Molecular context of a viral T cell determinant within a chimeric bacterial protein alters the diversity of its T cell recognition
Abstract
We genetically introduced two different viral CD4+ T cell epitopes within two internal sites of the Escherichia coli maltose-binding (MalE) protein. Affinity-purified hybrid MalE proteins were used to analyze the influence of the molecular environment on the presentation of inserted epitope to T cells. In the first model, the 120 to 132 PreS T cell epitope was inserted alone or with its C-terminal B cell epitope (132-145) at site 133 or 303 of MalE. The maltose-binding protein with PreS peptide inserts expressing the 120 to 132 sequence were able to induce in vivo and in vitro peptide-specific T cell response, whatever the length and the position of the insert. In the second model, the 103 to 115 T cell epitope from the C3 region of poliovirus type 1 (PV1) was inserted, with various flanking sequences, either at site 133 or 303 of MalE protein. The longer C3:86 to 115 insert induced poliovirus-specific T cell responses at both sites of MalE, whereas the C3:93 to 115 insert did it only at site 303 but not at site 133. Moreover, C3:103 to 115 specific T cell hybridomas discriminated between the processed peptides generated from the different chimeric proteins, as a result of differences in the length and the position of the inserted sequence. Therefore, in this experimental model the loss of in vivo immunogenicity of an antigenic determinant within a chimeric protein is related to the activation of a reduced T cell repertoire. These observations involve important consequences for the engineering of recombinant vaccines.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous