Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993:342:327-32.
doi: 10.1007/978-1-4615-2996-5_50.

Persistence of viral RNA in the central nervous system of mice inoculated with MHV-4

Affiliations

Persistence of viral RNA in the central nervous system of mice inoculated with MHV-4

J O Fleming et al. Adv Exp Med Biol. 1993.

Abstract

In order to study the role that viral persistence may play in chronic central nervous system (CNS) disease induced by murine coronaviruses, we have used the reverse transcriptase-polymerase chain reaction (RT-PCR) to study viral RNA in the brains of mice after intracerebral inoculation of JHM virus (JHMV or MHV-4). Quantitative RT-PCR showed that JHMV RNA decreased from approximately 2 ng/ug total brain RNA at day 6 post-inoculation (PI) to 0.1 pg/ug total brain RNA at 360 days PI. Double-stranded viral RNA could be detected up to day 20 PI. By the selective use of upstream or downstream primers during the RT step, it was possible to measure negative sense and positive sense JHMV RNA respectively, and we found that there was a marked rise in the ratio of positive to negative sense JHMV RNA after day 13 PI. Analysis of amplified products by dideoxy DNA sequencing showed that the characteristic mutation of our input virus (at position 3340 of gene 3) is maintained to at least day 42 PI. Taken together, these results favor a model of JHMV persistence in vivo in which viral RNA is present as double stranded forms initially and predominantly as single stranded, positive sense forms at late timepoints. Further analysis of this model in quantitative terms may contribute to our understanding of the biological significance of coronavirus persistence in the CNS.

PubMed Disclaimer

Publication types

LinkOut - more resources