Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May 15;343(3):500-11.
doi: 10.1002/cne.903430311.

Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain

Affiliations

Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain

D L Friedman et al. J Comp Neurol. .

Abstract

Multiple isoforms of creatine kinase (CK) are expressed in specific cell types as part of an energy delivery or shuttle system. To test the hypothesis that neurons utilize a creatine phosphate energy shuttle, we examined the pattern of CK isoform expression and localization in adult rat brain. Two isoforms of CK are present in brain extracts, "brain-type," or BCK, and the ubiquitous form of the mitochondrial CK (uMtCK), as detected by enzyme activity following nondenaturing electrophoresis and by Western blotting following denaturing electrophoresis. In formalin-fixed and paraffin-embedded sections of rat brain, uMtCK immunostaining is detected in the somata of all Golgi type I neurons in the cerebellum, pontine reticular formation, red nucleus, hippocampus, and cerebral cortex. Immunostaining for uMtCK appears throughout the cell body but not in nuclei. BCK immunostaining is also present in somata of Golgi type I neurons in the cerebellum, red nucleus, and pons and is distributed throughout the cell body and within nuclei. BCK immunostaining also appears in neuronal processes and is concentrated in the molecular layers of the cerebellum and the hippocampus and in cortical pyramidal cell dendrites. These results demonstrate a coordinate pattern of expression and compartmentation of BCK and uMtCK isoforms in neurons, which provides an anatomic basis for the transfer of metabolic energy via a creatine phosphate energy shuttle.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources