Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994;34(5):447-51.
doi: 10.1016/0361-9230(94)90017-5.

Intracellular labeling of cat spinal neurons using a tetramethylrhodamine-dextran amine conjugate

Affiliations

Intracellular labeling of cat spinal neurons using a tetramethylrhodamine-dextran amine conjugate

P A Carr et al. Brain Res Bull. 1994.

Abstract

Tetramethylrhodamine-dextran is a highly fluorescent neuroanatomical tracer that, in its 10,000 MW form, has seen widespread use as a sensitive anterograde tract-tracing label. We report here the use of a lower molecular weight tetramethylrhodamine-dextran (3000 MW; Molecular Probes, OR) as an in vivo intracellular marker of locomotor-related spinal neurons. In the paralyzed, decerebrate cat preparation, fictive locomotion was evoked by electrical stimulation of the mesencephalic locomotor region. Extracellular and intracellular potentials of rhythmically active spinal neurons were recorded using microelectrodes filled with 2% tetramethylrhodamine-dextran (3000 MW) in 0.9% saline (impedance 5-20 Mohm). Following impalement and electrophysiological characterization, neurons were iontophoretically injected for 2-30 min with 3-10 nA of pulsed positive current. Animals were then perfused 30 min to 7 h postinjection with a variety of paraformaldehyde- and glutaraldehyde-containing fixatives. After tissue sectioning, more than 90% of the injected neurons were recovered. Choline acetyltransferase-immunoreactivity could be demonstrated in a subpopulation of tetramethylrhodamine-dextran-labeled neurons. This technique, in addition to producing high-quality electrodes, has the advantages of rapid yet extensive filling of neuronal processes, no tissue processing prior to visualization, and compatibility with immunohistochemistry.

PubMed Disclaimer

LinkOut - more resources