Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Nov 1;204(2):823-7.
doi: 10.1006/viro.1994.1601.

HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes

Affiliations

HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes

R K Maitra et al. Virology. .

Abstract

The TAR sequence at the 5'-termini of all HIV-1 mRNA species forms a stable structure that is responsible for both transcriptional and translational regulation of HIV-1. Previously we and others reported that purified TAR RNA synthesized by in vitro transcription could activate two interferon-induced enzymes, the protein kinase (PKR) and 2-5A-synthetase. Because the PKR- and 2-5A-systems block protein synthesis initiation and induce RNA decay, respectively, these findings suggested mechanisms for the control of HIV-1 replication by the interferon system. To determine if contaminating dsRNA from in vitro transcription reactions was responsible for this effect, as suggested by Gunnery et al. 1990, (Proc., Natl. Acad. Sci. USA 87, 8687), we have reexamined these findings using chemically synthesized TAR (nucleotides +1 to +57). TAR RNA is shown here to have an intrinsic ability to activate PKR and 2-5A-synthetase. In contrast, a mutant form of TAR designed to have a disrupted secondary structure did not stimulate either enzyme. Chemically synthesized TAR mimicked other dsRNA species in its ability to activate and inhibit PKR at low and high RNA concentrations, respectively. HIV-1 TAT protein inhibited activation of PKR by HIV-1 TAR RNA suggesting an escape mechanism for the virus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources