Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Aug;17(8):348-53.
doi: 10.1016/0166-2236(94)90179-1.

Phosphorylation of dynamin I and synaptic-vesicle recycling

Affiliations
Review

Phosphorylation of dynamin I and synaptic-vesicle recycling

P J Robinson et al. Trends Neurosci. 1994 Aug.

Abstract

In nerve terminals, neurotransmitters are packaged in synaptic vesicles, and released by exocytosis. Empty synaptic vesicles are rapidly recycled for reuse by endocytosis. Much progress has been made in identifying the proteins involved in synaptic-vesicle trafficking, but the mechanism and regulation of endocytosis have largely remained an enigma. One approach to defining regulatory proteins that might be involved is to study stimulus-dependent phosphorylation events in nerve terminals. This has led to the identification of dephosphin, which is quantitatively dephosphorylated by nerve-terminal depolarization. Sequencing reveals that dephosphin is identical with dynamin I, a GTP-binding protein that functions in endocytosis. Phosphorylation and dephosphorylation of nerve-terminal dynamin I/dephosphin regulates its intrinsic GTPase activity in parallel with the regulation of synaptic-vesicle recycling. Therefore, phosphorylation and dephosphorylation of dynamin I might provide a Ca(2+)-dependent switch for endocytosis in the synaptic-vesicle pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources