Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;14(12):7521-8.
doi: 10.1523/JNEUROSCI.14-12-07521.1994.

Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust

Affiliations

Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust

U Müller et al. J Neurosci. 1994 Dec.

Abstract

Nitric oxide (NO) is generated by a Ca2+/calmodulin-activated NO synthase and diffuses as a short-lived transcellular messenger through the plasma membrane. This study investigates the neurochemistry and anatomical distribution of NO-releasing cells in the CNS of the locust. Ca2+/calmodulin-activated NO synthase is responsible for fixation-sensitive NADPH diaphorase (NADPHd) activity in cell homogenates of the nervous system. Therefore, neurons expressing NO synthase were detected by NADPHd histochemistry performed in whole-mounts. The anatomical screening revealed fewer than 1% NADPHd-positive cells in the ventral nerve cord, some of which were single potentially identifiable neurons, and groups of cell bodies in several regions of the cerebral ganglion. A prominent feature of the histochemical survey in the cerebral ganglion is a group of 45 intensely stained cells innervating the olfactory neuropil of the antennal lobe. A basic requirement for identifying NO as a messenger molecule is the Ca(2+)-dependent release during nerve cell depolarization. With a sensitive photometric assay we demonstrated that dissociated cells from brain areas rich in NADPHd-positive neurons release NO after stimulation by agents elevating cytoplasmic Ca2+ levels and by the excitatory neurotransmitter acetylcholine. The combined anatomical and biochemical experiments therefore provide firm evidence that NO is a messenger molecule released in the CNS of the locust. Since locust neurons can be readily grown in primary culture, NO-induced elevations of CGMP levels and other signal transduction mechanisms in target cells will also be amenable to a cellular analysis.

PubMed Disclaimer

Publication types

LinkOut - more resources