Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 1994 Dec;91(6):468-75.
doi: 10.1016/0013-4694(94)90167-8.

Somatosensory evoked magnetic fields in patients with stroke

Affiliations
Case Reports

Somatosensory evoked magnetic fields in patients with stroke

E L Maclin et al. Electroencephalogr Clin Neurophysiol. 1994 Dec.

Abstract

We used magnetoencephalography to evaluate areas of sensory cortex in patients with ischemic strokes involving the somatomotor system. We measured somatosensory evoked magnetic fields using a 7-channel neuromagnetometer and estimated the location of cortical responses to median nerve stimulation in 5 patients with cortical or subcortical strokes involving the somatomotor system. All patients underwent quantitative neurological examinations and a high resolution volumetric magnetic resonance imaging. The estimated current dipoles were localized onto the patient's own MRI scan in all patients with measurable responses. The location of the estimated dipole was always in non-infarcted tissue in the anatomical region of the somatosensory cortex. In 1 patient the somatosensory dipole localized to a peninsula of cortex flanked by infarcted tissue. Single photon emission computed tomography found the localized area of cortex to have significant blood flow. The estimated current dipole strengths of somatosensory evoked fields from median nerve stimulation correlated significantly (r = 0.95, P < 0.02) with the patient's ability to recognize numbers written on the involved palm (graphesthesia). The combination of evoked magnetic field recording and magnetic resonance imaging is a promising non-invasive technology for studying brain function in patients with cerebrovascular disease.

PubMed Disclaimer

Publication types

LinkOut - more resources