Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb;177(3):758-64.
doi: 10.1128/jb.177.3.758-764.1995.

Carbohydrate-dependent binding of the cell-free hemagglutinin of Vibrio cholerae to glycoprotein and glycolipid

Affiliations

Carbohydrate-dependent binding of the cell-free hemagglutinin of Vibrio cholerae to glycoprotein and glycolipid

N Saha et al. J Bacteriol. 1995 Feb.

Abstract

The carbohydrate-binding specificity of the cell-free hemagglutinin (HA) of Vibrio cholerae (K.K. Banerjee, A.N. Ghose, K. Datta-Roy, S.C. Pal, and A.C. Ghose, Infect. Immun.58:3698-3705, 1990) was studied by using glycoconjugates with defined sugar sequences. The HA was not inhibited by simple sugars including glucobiose, galabiose, and their N-acetylated derivatives. The hemagglutination of rabbit erythrocytes by the HA was inhibited moderately by fetuin, calf thyroglobulin, and human alpha 1-acid glycoprotein, all of which contain multiple asparagine-linked complex-type oligosaccharide units alone or in combination with serine/threonine-linked oligosaccharide units. The inhibitory potencies of the glycoproteins increased approximately 10-fold following removal of the terminal sialic acid and were completely destroyed by exhausative proteolysis. The HA agglutinated phosphatidylcholine liposomes containing GM1-ganglioside or its asialo-derivative in the presence of Ca2+ ions. The association constants of the complexes of the HA with asialofetuin, asialothyroglobulin, GM1-ganglioside, and asialo-GM1-ganglioside were determined by an enzyme-linked immunosorbent assay-based assay and found to be 1.7 x 10(7) M-1, 1.5 x 10(7) M-1, 1.8 x 10(7) M-1, and 2.4 x 10(7) M-1, respectively. Studies using chemically modified glycoproteins and plant lectins with defined sugar specificity revealed that the HA recognized the terminal beta 1-galactosyl moiety of these glycoconjugates. There was no evidence for the presence of an extended carbohydrate-binding domain in the HA molecule or a preference of the HA for a complex, branched oligosaccharide structure. Similar to the mechanisms proposed for the binding of cholera toxin and Shiga toxin to glycolipids and neoglycoproteins, the strong interaction of V. cholerae cell-free HA with glycoconjugates appeared to be a consequence of multiple weak binding to terminal beta1-galactosyl moieties of the glycoproteins or glycolipids.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1611-5 - PubMed
    1. Adv Protein Chem. 1973;27:349-467 - PubMed
    1. Proc Natl Acad Sci U S A. 1974 Jan;71(1):214-9 - PubMed
    1. J Biol Chem. 1974 Feb 10;249(3):803-10 - PubMed

Publication types

LinkOut - more resources