Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;66(6 Suppl):S151-6.

Defect in radiation signal transduction in ataxia-telangiectasia

Affiliations
  • PMID: 7530754

Defect in radiation signal transduction in ataxia-telangiectasia

M F Lavin et al. Int J Radiat Biol. 1994 Dec.

Abstract

Exposure of mammalian cells to ionizing radiation causes a delay in progression through the cycle at several checkpoints. Cells from patients with ataxia-telangiectasia (A-T) ignore these checkpoint controls postirradiation. The tumour suppressor gene product p53 plays a key role at the G1/S checkpoint preventing the progression of cells into S phase. The induction of p53 by radiation is reduced and/or delayed in A-T cells, which appears to account for the failure of delay at the G1/S checkpoint. We have investigated further this defect in radiation signal transduction in A-T. While the p53 response was defective after radiation, agents that interfered with cell cycle progression such as mimosine, aphidicolin and deprivation of serum led to a normal p53 response in A-T cells. None of these agents caused breaks in DNA, as determined by pulse-field gel electrophoresis, in order to elicit the response. Since this pathway is mediated by protein kinases, we investigated the activity of several of these enzymes in control and A-T cells. Ca+2-dependent and -independent protein kinase C activities were increased by radiation to the same extent in the two cell types, a variety of serine/threonine protein kinase activities were approximately the same and anti-tyrosine antibodies failed to reveal any differences in protein phosphorylation between A-T and control cells. It is not evident what is the nature of the defect in signal transduction in A-T cells. However, it is clear that the p53 response is normal in these cells after exposure to some agents and it is mediated through protein kinase C or another serine/threonine kinase.

PubMed Disclaimer

MeSH terms