Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Jan;268(1 Pt 2):R286-92.
doi: 10.1152/ajpregu.1995.268.1.R286.

Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage

Affiliations
Comparative Study

Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage

C Iadecola et al. Am J Physiol. 1995 Jan.

Abstract

We sought to determine whether expression of the inducible, calcium-independent isoform of nitric oxide synthase (iNOS) contributes to the tissue damage produced by focal cerebral ischemia. The middle cerebral artery was occluded in halothane-anesthetized spontaneously hypertensive rats. Twenty-four hours later rats received intraperitoneal injections of the iNOS inhibitor aminoguanidine (100 mg/kg twice per day; n = 10) or of aminoguanidine + L-arginine (300 mg/kg four times per day; n = 7), aminoguanidine + D-arginine (n = 7), arginine alone (n = 6), or vehicle (n = 9). Drugs were administered for 3 consecutive days. Infarct volume was determined by image analysis in thionin-stained brain sections 4 days after induction of ischemia. Administration of aminoguanidine reduced infarct volume by 33 +/- 4% (P < 0.05 from vehicle; analysis of variance and Tukey's test), a reduction that was antagonized by coadministration of L- but not D-arginine. Administration of L-arginine alone did not affect infarct size (P > 0.05 vs. vehicle). In separate rats (n = 10), aminoguanidine attenuated calcium-independent NOS activity in the infarct (P < 0.05 vs. vehicle) without affecting calcium-dependent activity (P > 0.05). Aminoguanidine did not affect resting cerebral blood flow or the cerebrovascular vasodilation elicited by hypercapnia, as determined by laser-Doppler flowmetry (n = 4). We conclude that aminoguanidine selectively inhibits iNOS activity in the area of infarction and reduces the volume of the infarct produced by middle cerebral artery occlusion.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources