Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb 17;270(7):2897-900.
doi: 10.1074/jbc.270.7.2897.

Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains

Affiliations
Free article

Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains

S Pluskey et al. J Biol Chem. .
Free article

Abstract

Src homology 2 (SH2) domains are phosphotyrosine binding modules found within many cytoplasmic proteins. A major function of SH2 domains is to bring about the physical assembly of signaling complexes. We now show that, in addition, simultaneous occupancy of both SH2 domains of the phosphotyrosine phosphatase SH-PTP2 (Syp, PTP 1D, PTP-2C) by a tethered peptide with two IRS-1-derived phosphorylation sites potently stimulates phosphatase activity. The concentration required for activation by the tethered peptide is 80-160-fold lower than either corresponding monophosphorylated peptide. Moreover, the diphosphorylated peptide stimulates catalytic activity 37-fold, compared with 9-16-fold for the monophosphorylated peptides. Mutational analyses of the SH2 domains of SH-PTP2 confirm that both SH2 domains participate in this effect. Binding studies with a tandem construct comprising the N- plus C-terminal SH2 domains show that the diphosphorylated peptide binds with 60-90-fold higher affinity than either monophosphorylated sequence. These results demonstrate that SH-PTP2 activity can be potently regulated by interacting via both of its SH2 domains with phosphoproteins having two cognate phosphorylation sites.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources