Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb 10;80(3):413-22.
doi: 10.1016/0092-8674(95)90491-3.

alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow

Affiliations
Free article

alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow

C Berlin et al. Cell. .
Free article

Abstract

Of the several families of adhesion receptors involved in leukocyte-endothelial cell interactions, only the selectins have been shown to initiate leukocyte interaction under physiologic shear; indeed, beta 2 (CD18) intergrins responsible for neutrophil arrest are unable to engage without prior selectin-mediated rolling. In contrast, alpha 4 (CD49d) integrins are shown here to initiate lymphocyte contract ("tethering") in vitro under shear and in the absence of a selectin contribution. The alpha 4 integrin ligands MAdCAM-1 and VCAM-1 support loose reversible interactions including rolling, as well as rapid sticking and arrest that is favored following integrin activation. Moreover, alpha 4 beta 7 mediates L-selectin (CD62L)-independent attachment of blood-borne lymphocytes to lamina propria venules in situ. Scanning electron microscopy of alpha 4 beta 7hi lymphoid cells reveals that, like L-selectin, alpha 4 beta 7 is highly concentrated on microvillous sites of initial cellular contact, whereas the beta 2 integrin LFA-1 is excluded from villi. Thus, alpha 4 but not beta 2 integrins can initiate leukocyte adhesion under flow, a capacity that may be in part a function of topographic presentation on microvilli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources