Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 5;665(2):269-76.
doi: 10.1016/0006-8993(94)91347-1.

Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage

Affiliations

Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage

P E Bickler et al. Brain Res. .

Abstract

To better understand why neurons accumulate calcium during cerebral ischemia, the influence of specific ion channel inhibitors on the rise in cytosolic free calcium ([Ca2+]c) during hypoxia or ischemia was evaluated in rat cerebrocortical brain slices. [Ca2+]c was measured fluorometrically with the dye fura-2 during hypoxia (95% N2/5% CO2 or 100 microM NaCN), simulated ischemia (100 microM NaCN plus 3.5 mM iodoacetate), or 0.5-1.0 mM glutamate. Hypoxia or ischemia increased [Ca+2]c from 100-250 nM to 1,000-2,500 nM within 3-5 min. Greater than 85% of the calcium accumulation was influx from the extracellular medium. The non-competitive N-methyl-D-aspartate (NMDA) inhibitor MK-801 reduced [Ca2+]c accumulation during hypoxia, but antagonism of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptors or voltage-gated sodium or calcium channels or Na+/Ca2+ exchangers had no effect. During ischemia, combined antagonism of NMDA, AMPA and voltage-gated sodium channels slowed the rate of calcium accumulation, but not concentration at 5 min. Membrane damage, as indicated by leakage of lactate dehydrogenase into superfusate, occurred coincidentally with calcium influx and ATP loss during both hypoxia and ischemia. We conclude that cytosolic calcium changes during hypoxia or ischemia in cortical brain slices are due to multiple mechanisms, are incompletely inhibited by combined ion channel blockade, and are associated with disruption of cell membrane integrity.

PubMed Disclaimer

Publication types

LinkOut - more resources