Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 4;375(6526):61-4.
doi: 10.1038/375061a0.

Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis

Affiliations

Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis

J F Collard et al. Nature. .

Abstract

Amyotrophic lateral sclerosis (ALS) is a degenerative disease of motor neurons, characterized by depositions of neurofilaments in the perikarya and proximal axons. The pathogenesis of ALS remains poorly understood, but two lines of evidence suggest that neurofilament accumulation may play a causal role. First, transgenic mice that overexpress neurofilament proteins show motor neuron degeneration and, second, variant alleles of the neurofilament heavy-subunit gene (NF-H) have been found in some human ALS patients. To investigate how disorganized neurofilaments might cause neurodegeneration, we examined axonal transport of newly synthesized proteins in mice that overexpress the human NF-H gene. We observed dramatic defects of axonal transport, not only of neurofilament proteins but also of other proteins, including tubulin and actin. Ultrastructural analysis revealed a paucity of cytoskeletal elements, smooth endoplasmic reticulum and especially mitochondria in the degenerating axons. We therefore propose that the neurofilament accumulations observed in these mice cause axonal degeneration by impeding the transport of components required for axonal maintenance, and that a similar mechanism may account for the pathogenesis of ALS in human patients.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances