Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 1;85(9):2414-21.

Contact- and growth factor-dependent survival in a canine marrow-derived stromal cell line

Affiliations
  • PMID: 7537113
Free article

Contact- and growth factor-dependent survival in a canine marrow-derived stromal cell line

R Huss et al. Blood. .
Free article

Abstract

Cell-cell interactions and the presence of growth factors such as stem cell factor (SCF; or c-kit ligand) or interleukin-6 (IL-6) are involved in the proliferation and differentiation of the canine marrow-derived stromal cell line DO64. In the presence of SCF, stromal cells are induced to differentiate, but not to proliferate. In contrast, in the presence of IL-6, stromal cells are induced to proliferate rather than to differentiate in culture. Both SCF and IL-6 are produced by the stromal cells themselves and, thus, act as autocrine factors. In addition, DO64 cells also interact physically with each other in culture when grown under optimal culture conditions (70% to 90% cell confluence and in the presence of serum), thereby supporting proliferation and maintaining viability. Under conditions of lower cell density or low serum or growth factor concentrations in culture, DO64 cells tend to aggregate and form clusters. This increase in local cell concentration is associated with preservation of viability, presumably because of the accumulation of autocrine factors. If no signal, neither intercellular nor soluble, is provided, and DO64 cells are not able to reach a critical cell density or to produce sufficient factors in an autocrine fashion, the cells cease to proliferate and eventually die.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources