Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 11;269(5225):847-50.
doi: 10.1126/science.7543698.

CFTR as a cAMP-dependent regulator of sodium channels

Affiliations

CFTR as a cAMP-dependent regulator of sodium channels

M J Stutts et al. Science. .

Abstract

Cystic fibrosis transmembrane regulator (CFTR), the gene product that is mutated in cystic fibrosis (CF) patients, has a well-recognized function as a cyclic adenosine 3',5'-monophosphate (cAMP)-regulated chloride channel, but this property does not account for the abnormally high basal rate and cAMP sensitivity of sodium ion absorption in CF airway epithelia. Expression of complementary DNAs for rat epithelial Na+ channel (rENaC) alone in Madin Darby canine kidney (MDCK) epithelial cells generated large amiloride-sensitive sodium currents that were stimulated by cAMP, whereas coexpression of human CFTR with rENaC generated smaller basal sodium currents that were inhibited by cAMP. Parallel studies that measured regulation of sodium permeability in fibroblasts showed similar results. In CF airway epithelia, the absence of this second function of CFTR as a cAMP-dependent regulator likely accounts for abnormal sodium transport.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources