Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun;68(6):2289-98.
doi: 10.1016/S0006-3495(95)80411-X.

Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells

Affiliations

Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells

F F Bukauskas et al. Biophys J. 1995 Jun.

Abstract

A clone of human HeLa cells stably transfected with mouse connexin40 DNA was used to examine gap junctions. Two separate cells were brought into physical contact with each other ("induced cell pair") to allow insertion of gap junction channels and, hence, formation of a gap junction. The intercellular current flow was measured with a dual voltage-clamp method. This approach enabled us to study the electrical properties of gap junction channels (cell pairs with a single channel) and gap junctions (cell pairs with many channels). We found that single channels exhibited multiple conductances, a main state (gamma j(main state)), several substates (gamma j(substates)), a residual state (gamma j (residual state)), and a closed state (gamma j(closed state)). The gamma j(main state) was 198 pS, and gamma j(residual state) was 36 pS (temperature, 36-37 degrees C; pipette solution, potassium aspartate). Both properties were insensitive to transjunctional voltage, Vj. The transitions between the closed state and an open state (i.e., residual state, substate, or main state) were slow (15-45 ms); those between the residual state and a substate or the main state were fast (1-2 ms). Under steady-state conditions, the open channel probability, Po, decreased in a sigmoidal manner from 1 to 0 (Boltzmann fit: Vj,o = -44 mV; z = 6). The temperature coefficient, Q10, for gamma j(main state) and gamma j(residual state) was 1.2 and 1.3, respectively (p < 0.001; range 15-40 degrees C). This difference suggests interactions between ions and channel structure in case of gamma j(residual state). In cell pairs with many channels, the gap junction conductance at steady state, gj, exhibited a bell-shaped dependency from Vj (Boltzmann fit, negative Vj, Vj,o = -45 mV, gj(min) = 0.24; positive Vj, Vj,o = 49 mV, gj(min) = 0.26; z = 6). We conclude that each channel is controlled by two types of gates, a fast one responsible for Vj gating and involving transitions between open states (i.e., residual state, substates, main state), and a slow one involving transitions between the closed state and an open state.

PubMed Disclaimer

References

    1. Eur J Cell Biol. 1994 Jun;64(1):101-12 - PubMed
    1. J Gen Physiol. 1993 Nov;102(5):925-46 - PubMed
    1. J Cell Biol. 1990 Nov;111(5 Pt 1):2077-88 - PubMed
    1. J Biol Chem. 1992 Jan 25;267(3):2057-64 - PubMed
    1. Circ Res. 1992 Feb;70(2):438-44 - PubMed

Publication types

LinkOut - more resources