Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 25;270(34):19761-6.
doi: 10.1074/jbc.270.34.19761.

Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells

Affiliations
Free article

Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells

E Ikeda et al. J Biol Chem. .
Free article

Abstract

Vascular endothelial growth factor (VEGF) is an endothelial specific angiogenic mitogen secreted from various cell types including tumor cells. Increasing evidence suggests that VEGF is a major regulator of physiological and pathological angiogenesis, and the VEGF/VEGF receptor system has been shown to be necessary for glioma angiogenesis. Hypoxia seems to play a critical role in the induction of VEGF expression during glioma progression. C6 glioma cells provide an in vivo glioma model for the study of tumor angiogenesis, and the expression of VEGF in C6 cells has been shown to be up-regulated by hypoxia in vitro. However, little is known about the molecular mechanism of hypoxic induction of VEGF. Here, we demonstrate that hypoxic induction of VEGF in C6 cells is due to both transcriptional activation and increased stability of mRNA. Nuclear run-on assays revealed a fast and lasting transcriptional activation, whereas the determination of mRNA half-life showed a slower increase of mRNA stability during hypoxia. Reporter gene studies revealed that hypoxia responsive transcription-activating elements were present in the 5'-flanking region of the VEGF gene. These results suggested that several distinct molecular mechanisms were involved in hypoxia-induced gene expression and were activated in a biphasic manner.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources