Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 30;6(8):1089-92.
doi: 10.1097/00001756-199505300-00004.

Ca2+ permeable AMPA/kainate channels permit rapid injurious Ca2+ entry

Affiliations

Ca2+ permeable AMPA/kainate channels permit rapid injurious Ca2+ entry

Y M Lu et al. Neuroreport. .

Abstract

Small subsets of central neurons possessing Ca2+ permeable AMPA/kainate channels can be identified by a histochemical stain based on kainate-stimulated Co2+ uptake (Co2+(+)neurons) and are unusually vulnerable to AMPA/kainate receptor-mediated injury. Using brief kainate exposures (which selectively destroy Co2+(+) neurons) along with kainate triggered 45Ca2+ influx measurements, we estimate kainate to cause an unusually high rate of Ca2+ influx into Co2+(+) neurons. Also, while fura-2 Ca2+ imaging revealed low (10 microM) kainate exposures to preferentially induce intracellular free Ca2+ ([Ca2+]i) elevations in Co2+(+) neurons, intense (100 microM) kainate exposures used in the 45Ca2+ influx studies triggered comparable [Ca2+]i rises in all neurons. These findings suggest that the exceptional vulnerability of Co2+(+) neurons to AMPA/kainate receptor-mediated injury reflects a high rate of agonist triggered Ca2+ influx, and that [Ca2+]i rises may only poorly reflect influx rate.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources