Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul 10;357(4):554-72.
doi: 10.1002/cne.903570407.

Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: a Golgi study

Affiliations

Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: a Golgi study

M Marín-Padilla. J Comp Neurol. .

Abstract

The prenatal developmental histories of layer I, fibrous (white matter), and protoplasmic (gray matter) astrocytes have been studied in the human neocortex by the rapid Golgi method. The developmental route followed by each of these astrocytes is a distinct process which evolves from a specific precursor, occurs at a different time, and is linked to a specific event. The differentiation of layer I astrocytes is linked to the neocortex external glial limiting membrane (EGLM), that of fibrous astrocytes to the early white matter vascularization and maturation, and that of protoplasmic astrocytes to the late gray matter ascending vascularization and maturation. At the start of development, three glial precursors are established in the neocortex: 1) original radial neuroectodermal cells with nuclei above the primordial plexiform layer (PPL) by losing their ependymal and retaining their pial attachments become early astrocytes of layer I and EGLM components; 2) neuroectodermal cells with nuclei below the PPL that retain their pial and ependymal attachments become type I radial glial cells which are committed to the guidance of neurons and the early EGLM maintenance; and, 3) neuroectodermal cells that lose their pial but retain their ependymal attachment are transformed into type II radial glial precursors. By progressively losing their ependymal attachment, type II radial glia precursors become freely migrating cells, establish vascular contacts, and differentiate into fibrous astrocytes (and into oligodendrocytes?) throughout the subplate, developing white matter, and paraventricular regions. After the formation of the gray matter, additional layer I astrocytes are needed for the EGLM late prenatal and postnatal maintenance because type I radial glia cells start to regress and to reabsorb their EGLM endfeet. A late ependyma-to-pia migration of glial precursors progressively repopulates layer I with additional astrocytes and establishes the ephemeral subpial granular layer (SGL) of Ranke. From the 15th week of gestation to the time of birth, late astrocytes of layer I lose their EGLM attachments, migrate freely into the maturing gray matter, establish vascular contacts, and differentiate into protoplasmic astrocytes. The protoplasmic astrocytes of the gray matter evolve from transformation of layer I astrocytes rather than from radial glia cells as is generally believed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources