Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Oct 10;34(40):13176-82.
doi: 10.1021/bi00040a032.

X-ray absorption spectroscopy comparison of the active site structures of Phanerochaete chrysosporium lignin peroxidase isoenzymes H2, H3, H4, H5, H8, and H10

Affiliations

X-ray absorption spectroscopy comparison of the active site structures of Phanerochaete chrysosporium lignin peroxidase isoenzymes H2, H3, H4, H5, H8, and H10

R Sinclair et al. Biochemistry. .

Abstract

The iron heme and its immediate environment can provide information that is pivotal to our understanding of the structural and mechanistic features that confer unusual properties to the heme peroxidases. X-ray absorption spectroscopy (XAS), which is ideally suited for the investigation of the local environment and electronic structure of the heme iron of hemeproteins, has been used to characterize a variety of lignin peroxidase and manganese-dependent peroxidase isoenzymes produced by the white rot fungus Phanerochaete chrysosporium. The data suggest no differences within the error in the first coordination shell of iron for the isoenzymes H2, H3, H4, H5, H8, and H10 examined in this study. The pyrrole nitrogens are at a distance of 2.05 +/- 0.015 A, and the proximal histidine nitrogens are at 1.93 +/- 0.02 A, while the sixth ligands are located at 2.17 +/- 0.03 A. Significant differences are observed in higher coordination shells which may be related to conformational differences in the heme.

PubMed Disclaimer

Publication types

LinkOut - more resources