Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Oct 15;55(20):4575-80.

Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis

Affiliations
  • PMID: 7553632

Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis

J Rak et al. Cancer Res. .

Abstract

The growth of solid tumors in vivo beyond 1-2 mm in diameter requires induction and maintenance of an angiogenic response. This can occur through the release of various angiogenic growth factors from tumor cells. One such factor is vascular endothelial growth factor/vascular permeability factor (VEGF/VPF), a secreted and specific mitogen for vascular endothelial cells. We show that one of the most commonly encountered genetic changes detected in human cancer, i.e., expression of mutant ras oncogenes, is associated with marked up-regulation of VEGF/VPF in transformed epithelial cells. Thus, elevation of the levels of both VEGF/VPF mRNA and secreted functional protein were detected in human and rodent tumor cell lines expressing mutant K-ras or H-ras oncogenes, respectively. Genetic disruption of the mutant K-ras allele in human colon carcinoma cells was associated with a reduction in VEGF/VPF activity. Furthermore, pharmacological disruption of mutant RAS protein function in H-ras transformed rat intestinal epithelial cells by treatment with L-739,749 (a protein farnesyltransferase inhibitor) caused a significant suppression of VEGF/VPF. The results suggest that dominantly acting ras oncogenes may contribute to the growth of solid tumors in vivo not only by a direct effect on tumor cell proliferation but also indirectly, i.e., by facilitating tumor angiogenesis. Hence, pharmacologically targeting mutant ras oncogenes could conceivably suppress solid tumor growth in vivo, in part, by inhibiting tumor-induced angiogenesis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources