Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1976 Jan;79(1):53-60.
doi: 10.1093/oxfordjournals.jbchem.a131058.

Comparative studies on polyguanylate polymerase and polyadenylate polymerase activities in the DNA-dependent RNA polymerase I fraction from cauliflower

Free article
Comparative Study

Comparative studies on polyguanylate polymerase and polyadenylate polymerase activities in the DNA-dependent RNA polymerase I fraction from cauliflower

T Mizuochi et al. J Biochem. 1976 Jan.
Free article

Abstract

The properties of poly(G) polymerase and poly(A) polymerase activities in the DNA-dependent RNA polymerase [nucleosidetriphosphate: RNA nucleotidyltransferase EC 2.7.7.6] I fraction from cauliflower (Brassica oleracea var. botrytis) were comparatively investigated. The pH optimum, the effect of ionic strength, the effect of substrate concentration on the rate of synthesis, the effect of divalent metal ion concentration, and the time course of synthesis at different temperatures were all different for the three polymerase activities. The enzyme fraction preferentially utilized denatured DNA. Synthetic poly(C) and poly(U) were more effectively utillized for the synthesis of polyguanylate and polyadenylate, respectively. Further, it was found that poly(G) and poly(A) formed in vitro by the enzyme fraction had chain length of 25-28 and 84-89 nucleotides, respectively, and that poly (adenylate-gluanylate) chain was hardly formed when ATP and GTP were added together as substrates in the same reaction medium.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms