Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Oct;77(4):759-64.
doi: 10.1161/01.res.77.4.759.

Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure

Affiliations
Free article

Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure

E Kiss et al. Circ Res. 1995 Oct.
Free article

Abstract

The objective of this study was to elucidate the role of the sarcoplasmic reticulum (SR) in the transition from compensated pressure-overload hypertrophy (increased left ventricular [LV] mass, normal LV function, and no pulmonary congestion) to congestive heart failure (increased LV mass, depressed LV function, and pulmonary congestion). To address this issue, the descending thoracic aorta was banded for 4 and 8 weeks in adult guinea pigs, and the changes in isovolumic LV mechanics, SR Ca2+ transport, and SR protein levels were determined and compared with age-matched sham-operated control animals. A subgroup of the 8-week banded animals manifested the congestive heart failure phenotype with diminished developed LV pressure normalized by LV mass, reduced rates of LV pressure development and relaxation, and markedly increased lung weight-to-body weight ratios. The cardiac mechanical and morphometric changes were associated with depressed protein levels of the SR Ca(2+)-ATPase (85% of the control) and phospholamban (65% of the control) assessed by quantitative immunoblotting. Resultant rates of SR Ca2+ uptake (Vmax) and the affinity of SR Ca(2+)-ATPase for Ca2+ (EC50) were significantly depressed [32 +/- 6 nmol Ca2+.min-1.mg-1 and 0.59 +/- 0.12 (mumol/L)/L, respectively] compared with the 8-week sham-operated control animals [40 +/- 1 nmol Ca2+.min-1.mg-1 and 0.40 +/- 0.05 (mumol/L)/L, respectively]. We conclude that this model of pressure overload-induced cardiac failure is associated with (1) diminished LV force development, rates of pressure development, and decay; (2) depressed protein expression of the Ca(2+)-cycling proteins SR Ca(2+)-ATPase and phospholamban; and (3) decreased Vmax and affinity of the SR Ca(2+)-ATPase for Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types