Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 26;289(3):463-9.
doi: 10.1016/0922-4106(95)90155-8.

The role of inositol 1,3,4,5-tetrakisphosphate in internal Ca2+ mobilization following histamine H1 receptor stimulation in DDT1 MF-2 cells

Affiliations

The role of inositol 1,3,4,5-tetrakisphosphate in internal Ca2+ mobilization following histamine H1 receptor stimulation in DDT1 MF-2 cells

L Van der Zee et al. Eur J Pharmacol. .

Abstract

Receptor-activated formation of inositol phosphates results in mobilization of intracellular stored Ca2+ in a variety of cells, including vas deferens derived DDT1 MF-2 cells. Stimulation of the histamine H1 receptor on these cells caused a pronounced formation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) with respect to that of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). In this study, the role of inositol phosphates, in particular Ins(1,3,4,5)P4 on the internal Ca(2+)-releasing process was investigated in permeabilized and histamine-stimulated intact DDT1 MF-2 cells. In permeabilized cells. Ins(1,4,5)P3 induced a concentration-dependent release of intracellular stored Ca2+. Addition of Ins(1,3,4,5)P4 did not cause Ca2+ mobilization, but its presence enhanced the amount of Ca2+ released by Ins(1,4,5)P3, thereby increasing the total Ca(2+)-releasing capacity. The effect of both inositol phosphates was inhibited by heparin, known to block Ins(1,4,5)P3-sensitive receptors. Thus, the additional amount of Ca2+ released by Ins(1,3,4,5)P4 is mediated, either via Ins(1,4,5)P3-sensitive Ca2+ channels, or via different heparin-sensitive Ca2+ channels activated by both Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Histamine H1 receptor stimulation in intact cells induced a Ca(2+)-dependent K+ current, representing Ca2+ release from internal stores if receptor-activated Ca2+ entry from the extracellular space was prevented under Ca(2+)-free conditions or in the presence of La3+. This transmembrane current was abolished in the presence of intracellularly applied heparin. Depletion of Ins(1,4,5)P3-sensitive Ca2+ stores by internal application of Ins(1,4,5)P3 reduced the histamine evoked K+ current to some extent if the contribution of external Ca2+ was excluded.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources