G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly
- PMID: 7559569
- DOI: 10.1074/jbc.270.42.24631
G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly
Abstract
Rho, a member of the Ras superfamily of GTP-binding proteins, regulates actin polymerization resulting in the formation of stress fibers and the assembly of focal adhesions. In Swiss 3T3 cells, heterotrimeric G protein-coupled receptors for lysophosphatidic acid and gastrin releasing peptide stimulate Rho-dependent stress fiber and focal adhesion formation. The specific heterotrimeric G protein subunits mediating Rho-dependent stress fiber and focal adhesion formation have not been defined previously. We have expressed GTPase-deficient, constitutively activated G protein alpha subunits and mixtures of beta and gamma subunits in Swiss 3T3 cells. Measurement of actin polymerization and focal adhesion formation indicated that GTPase-deficient alpha 12 and alpha 13, but not the activated forms of alpha 12 or alpha q stimulated stress fiber and focal adhesion assembly. Combinations of beta and gamma subunits were unable to stimulate stress fiber or focal adhesion formation. G alpha 12- and alpha 13-mediated stress fiber and focal adhesion assembly was inhibited by botulinum C3 exoenzyme, which ADP-ribosylates and inactivates Rho, indicating that alpha 12 and alpha 13, but not other G protein alpha subunits or beta gamma complexes, regulate Rho-dependent responses. The results define the integration of G12 and G13 with the regulation of the actin cytoskeleton.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
