Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug;74(8):1482-8.
doi: 10.1177/00220345950740080801.

Computer modeling of the effects of chewing sugar-free and sucrose-containing gums on the pH changes in dental plaque associated with a cariogenic challenge at different intra-oral sites

Affiliations

Computer modeling of the effects of chewing sugar-free and sucrose-containing gums on the pH changes in dental plaque associated with a cariogenic challenge at different intra-oral sites

G H Dibdin et al. J Dent Res. 1995 Aug.

Abstract

Variation in salivary access to different intra-oral sites is an important factor in the site-dependence of dental caries. This study explored, theoretically, how access is modified by chewing sugar-free and sugar-containing gums. A finite difference computer model, described elsewhere, was used. This allowed for diffusion and/or reaction of substrate, acid product, salivary buffers, and fixed-acid groups. Site-dependent saliva/plaque exchange was modeled in terms of a 100-microns-thick salivary film covering the plaque (a) flowing directly from the salivary ducts, (b) flowing from the intra-oral salivary pool, or (c) exchanging with the pool. Computed flow-velocities or rates of exchange were based on previous intra-oral measurements. The model was also tested against an in vitro study conducted by two of the authors. In addition, the three proposed models of saliva/plaque interaction were compared, and the effect of salivary film thickness investigate. Results suggested that: (1) although sugar-free gum chewed during a cariogenic challenge causes a rapid rise in plaque pH, sucrose-containing gums cause the pH, after a temporary rise resulting from increased salivary flow, to stay low for an extended period; (2) the computer model reproduced in vitro tests reasonably well; (3) although the three models of the plaque/saliva interaction start from different assumptions, two lead to closely related predictions; and (4) increasing the assumed salivary film thickness by a large amount (e.g., from 50 to 200 microns) caused no change in modeled Stephan curves, as long as these changes were accompanied by appropriate reductions in film velocity, in accord, theoretically, with the practical clearance data.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources