Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul;24(7):497-506.
doi: 10.1007/BF01179975.

Morphological plasticity of axotomized retinal ganglion cells following intravitreal transplantation of a peripheral nerve segment

Affiliations

Morphological plasticity of axotomized retinal ganglion cells following intravitreal transplantation of a peripheral nerve segment

J L Lei et al. J Neurocytol. 1995 Jul.

Abstract

During normal development of retinal ganglion cells when the axons are growing, transient dendritic spines have been observed. Similar dendritic spine-like processes are also exhibited by retinal ganglion cells undergoing axonal regeneration into a peripheral nerve grafted to the damaged optic axons. Here we show, using the intracellular injection of Lucifer Yellow, that when a segment of peripheral nerve is transplanted to the vitreous body, a procedure which induces ectopic sprouting of axon-like processes from the cell bodies and dendrites of some retinal ganglion cells, similar spine-like processes appear on the dendrites of cells with ectopic sprouts. Quantitative analysis indicated that there were significant changes with posttransplantation survival time in the distributions of spine-like processes and axon-like processes on these sprouting retinal ganglion cells following the intravitreal transplantation of a piece of peripheral nerve. The remodelling of the spine-like processes and axon-like processes correlated with one another suggesting that plastic changes can occur in certain dendritic subcompartments independent of the growth activity of the other dendritic subcompartments.

PubMed Disclaimer

Similar articles

Cited by

Publication types