Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Feb;22(2):171-81.
doi: 10.1118/1.597600.

Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems

Affiliations
Comparative Study

Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems

J T Dobbins 3rd. Med Phys. 1995 Feb.

Abstract

The proper understanding of modulation transfer function (MTF), noise power spectra (NPS), and noise equivalent quanta (NEQ) in digital systems is significantly hampered when the systems are undersampled. Undersampling leads to three significant complications: (1) MTF and NPS do not behave as transfer amplitude and variance, respectively, of a single sinusoid, (2) the response of a digital system to a delta function is not spatially invariant and therefore does not fulfill certain technical requirements of classical analysis, and (3) NEQ loses its common meaning as maximum available SNR2 (signal-to-noise) at a particular frequency. These three complications cause the comparisons of MTF and NEQ between undersampled digital systems to depend on the frequency content of the images being evaluated. A tutorial of MTF, NPS, and NEQ concepts for digital systems is presented, along with a complete theoretical treatment of the above-mentioned complications from undersampling.

PubMed Disclaimer

Publication types

LinkOut - more resources