Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995:64:403-34.
doi: 10.1146/annurev.bi.64.070195.002155.

Collagens: molecular biology, diseases, and potentials for therapy

Affiliations
Review

Collagens: molecular biology, diseases, and potentials for therapy

D J Prockop et al. Annu Rev Biochem. 1995.

Abstract

The collagen superfamily of proteins now contains at least 19 proteins formally defined as collagens and an additional ten proteins that have collagen-like domains. The most abundant collagens form extracellular fibrils or network-like structures, but the others fulfill a variety of biological functions. Some of the eight highly specific post-translational enzymes involved in collagen biosynthesis have recently been cloned. Over 400 mutations in 6 different collagens cause a variety of human diseases that include osteogenesis imperfecta, chondrodysplasias, some forms of osteoporosis, some forms of osteoarthritis, and the renal disease known as the Alport syndrome. Many of the disease phenotypes have been produced in transgenic mice with mutated collagen genes. There has been increasing interest in the possibility that the unique post-translational enzymes involved in collagen biosynthesis offer attractive targets for specifically inhibiting excessive fibrotic reactions in a number of diseases. A number of experiments suggest it may be possible to inhibit collagen synthesis with oligo-nucleotides or antisense genes.

PubMed Disclaimer

LinkOut - more resources