Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul;80(4):529-41.
doi: 10.1113/expphysiol.1995.sp003865.

The effects of glibenclamide on tetanic force and intracellular calcium in normal and fatigued mouse skeletal muscle

Affiliations
Free article

The effects of glibenclamide on tetanic force and intracellular calcium in normal and fatigued mouse skeletal muscle

S Duty et al. Exp Physiol. 1995 Jul.
Free article

Abstract

In this study the effects of ATP-sensitive K+ channel modulators were studied in intact single fibres dissected from mouse skeletal muscle. Indo-1 was used to measure [Ca2+]i simultaneously with force during normal and fatiguing stimulation. In control fibres, opening of ATP-sensitive K+ channels with BRL 38227 produced a small reduction in tetanic force and [Ca2+]i. In contrast, glibenclamide, a selective blocker of the ATP-sensitive K+ channel, slightly increased tetanic force and [Ca2+]i in these fibres and also increased Ca2+ sensitivity. Glibenclamide produced a more marked increase in tetanic force and [Ca2+]i during the later stages of fatiguing stimulation, although this effect was observed in only 50% of fibres examined. We conclude from this study that glibenclamide produces a partial reversal of the later stages of fatigue in a subpopulation of muscle fibres. Opening of ATP-sensitive K+ channels may therefore contribute to the decline in tetanic force and [Ca2+]i characteristic of skeletal muscle fatigue.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources