Effects of photodynamic therapy on leucocyte-endothelium interaction: differences between normal and tumour tissue
- PMID: 7577457
- PMCID: PMC2033933
- DOI: 10.1038/bjc.1995.475
Effects of photodynamic therapy on leucocyte-endothelium interaction: differences between normal and tumour tissue
Abstract
An inflammatory reaction is regularly noticed in irradiated tissues following photodynamic therapy (PDT). This observation is potentially associated with leucocyte-mediated tissue damage, which might further contribute to the tumoricidal effect of this therapy. The objective of our study was to investigate the effects of PDT on leucocyte-endothelium interaction in the microvasculature of tumours and normal tissue. Experiments were performed in the dorsal skinfold chamber preparation of Syrian golden hamsters bearing amelanotic melanoma A-Mel-3. The photosensitiser. Photofrin (5 mg kg-1 i.v.) was injected 24 h before laser irradiation (630 nm, 100 mW cm-2, 10 J cm-2 or 100 J cm-2). Post-capillary confluent venules (diameter 15-40 microns) of subcutaneous (s.c.) tissue or the amelanotic melanoma A-Mel-3 were observed by intravital microscopy before, 5, 30, 60 and 180 min after laser irradiation and recorded for off-line analysis. Before treatment, the number of adherent leucocytes in tumour vessels was only 22% of the number observed in vessels of s.c. tissue (P < 0.01). The maximum increase in adhering leucocytes was observed in post-capillary venules of s.c. tissue 1 h after PDT (P < 0.01). In contrast, enhanced leucocyte-endothelium interaction was missing in tumour vessels and in control groups. These results indicate that the tumour destruction observed after PDT is not mediated by leucocyte-endothelium interaction in the tumour. Induction of leucocyte adhesion in the PDT-treated normal tissue suggests a contribution to the peritumoral inflammatory response. Different maturational status or biochemical properties of tumour microvascular endothelium may explain the lack of leucocyte adherence upon PDT.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
